On Totally Decomposable Algebras with Involution in Characteristic Two
نویسنده
چکیده
A necessary and sufficient condition for a central simple algebra with involution over a field of characteristic two to be decomposable as a tensor product of quaternion algebras with involution, in terms of its Frobenius subalgebras, is given. It is also proved that a bilinear Pfister form, recently introduced by A. Dolphin, can classify totally decomposable central simple algebras of orthogonal type. Mathematics Subject Classification: 16W10, 16W25, 16K20, 11E39.
منابع مشابه
Orthogonal Pfister Involutions in Characteristic Two
We show that over a field of characteristic 2 a central simple algebra with orthogonal involution that decomposes into a product of quaternion algebras with involution is either anisotropic or metabolic. We use this to define an invariant of such orthogonal involutions in characteristic 2 that completely determines the isotropy behaviour of the involution. We also give an example of a non-total...
متن کاملA Hermitian Analogue of the Bröcker–prestel Theorem
The Bröcker–Prestel local-global principle characterizesweak isotropy of quadratic forms over a formally real field in terms of weak isotropy over the henselizations and isotropy over the real closures of that field. A hermitian analogue of this principle is presented for algebras of index at most two. An improved result is also presented for algebras with a decomposable involution, algebras of...
متن کاملUltra and Involution Ideals in $BCK$-algebras
In this paper, we define the notions of ultra and involution ideals in $BCK$-algebras. Then we get the relation among them and other ideals as (positive) implicative, associative, commutative and prime ideals. Specially, we show that in a bounded implicative $BCK$-algebra, any involution ideal is a positive implicative ideal and in a bounded positive implicative lower $BCK$-semilattice, the not...
متن کاملA Weak Hasse Principle for Central Simple Algebras with an Involution
The notions of totally indefinite and weakly isotropic algebras with involution are introduced and a proof is given of the fact that a field satisfies the Effective Diagonalization Property (ED) if and only if it satisfies the following weak Hasse principle: every totally indefinite central simple algebra with involution of the first kind over the given field is weakly isotropic. This generaliz...
متن کاملDecomposition of Algebras with Involution in Characteristic 2
In this paper we present a decomposition theorem for hermitian forms over fields of characteristic 2 refining the usual Witt decomposition in this case. We apply this decomposition to algebras with involution over fields of characteristic 2 to give a complete description of the effect of passing to a generic splitting field of the algebra on the isotropy of the involution.
متن کامل